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Firing statistics and correlations in spiking neurons: A level-crossing approach
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We present a time-dependent level-crossing theory for linear dynamical systems perturbed by colored Gaussian
noise. We apply these results to approximate the firing statistics of conductance-based integrate-and-fire neurons
receiving excitatory and inhibitory Poissonian inputs. Analytical expressions are obtained for three key quantities
characterizing the neuronal response to time-varying inputs: the mean firing rate, the linear response to
sinusoidally modulated inputs, and the pairwise spike correlation for neurons receiving correlated inputs. The
theory yields tractable results that are shown to accurately match numerical simulations and provides useful tools
for the analysis of interconnected neuronal populations.

DOI: 10.1103/PhysRevE.84.041919 PACS number(s): 87.19.lj, 05.10.Gg, 87.19.ll

I. INTRODUCTION

Understanding the dynamics of interconnected networks
of neurons is of fundamental importance in theoretical neu-
roscience. An essential step in solving this problem is to
determine the input-output relationship of individual neurons
given an underlying biophysical model. For white-noise-
driven integrate-and-fire (IF) neurons this problem is generally
tractable (e.g., [1–4]), but efforts to integrate key aspects of
neuronal signaling into the IF formalism have added to its
complexity. First, synaptic input consists of discrete action
potentials, which results in non-Gaussian voltage distributions
and affects firing statistics [5–8]. Second, synaptic communi-
cation is mediated by two separate (excitatory and inhibitory)
systems with distinct kinetics. The majority of theoretical
studies include only one synaptic type and assume either
fast (e.g., [9–11]) or slow [11,12] kinetics compared with the
membrane integration time, but experimental evidence sug-
gests that these time scales are often comparable [13]. Finally,
neurons sharing presynaptic partners exhibit correlations in
their synaptic input. While network models typically assume
sparse connectivity for which correlations are negligible,
recent reports suggest important functional roles for this type
of “noise” correlation [14,15]. For IF neurons, obtaining
the input-output relationship essentially involves computing
moments of the first passage time (FPT) to threshold, but
analytical solutions are rarely possible. Here, we show that
for membrane-to-synaptic time constant ratios of the order of
unity, level-crossing statistics provide good approximations to
the FPT while retaining sufficient tractability to incorporate
additional biological detail. Analytical expressions are given
for the mean firing rate, pairwise spike correlation, and linear
response to sinusoidally modulated inputs, which compare
favorably with numerical simulations of conductance-based
IF neurons. The method thus provides a complete set of input-
output properties needed for an analysis at the network level.
Although the focus of the present paper is on neuroscience
applications, the theory is rather general and applies to any
linear system perturbed by colored Gaussian noise; our results
may therefore find applications in other fields.

*Present address: Laboratory for Circuit Mechanisms of Sensory
Perception, RIKEN Brain Science Institute, Wako, Saitama, Japan.

II. MODEL DEFINITION

A neuron, with capacitance C and charged at a voltage V ,
obeys the current-balance equation

CV̇ + IL = Isyn + Iext, (1)

where IL =GL(V −EL) is a transmembrane “leak” current
of conductance GL such that C/GL = 20 ms and reversal
potential EL = −65 mV, and Iext is an external current. The
synaptic current Isyn comprises excitatory and inhibitory con-
ductances Isyn = Ge(Ee − V ) + Gi(Ei − V ) with reversals
Ee = 0 and Ei = −80 mV. Synaptic channels activate rapidly
but close with a characteristic time particular to excitation
(τe = 3 ms) or inhibition (τi = 10 ms). The assumption that
these conductances are activated stochastically with a short
autocorrelation allows a Langevin equation to be written,
ταĠα = Gα − Gα + σα

√
2ταξα for α ∈ {e,i}, where Gα(t)

and σα(t) represent the tonic and fluctuating components
driving the synaptic conductance. The general form of this
equation can be related to a family of underlying models;
in our simulations a process is considered in which synaptic
conductances increase by an amount Jα at a rate Rα(t) with
intermediate exponential decay with characteristic time τα .
The diffusion limit of this process assigns Gα = JαταRα

and σα = Jα

√
ταRα/2. Finally, a mechanism for an action

potential is introduced: if the voltage exceeds Vϑ ≈ −50 mV,
a spike is emitted and the voltage is immediately reset to
Vr = −60 mV.

The equations for V and Gα constitute a stochastic process
with multiplicative noise. Expansion of Eq. (1) to leading order
in the fluctuating synaptic conductances [5] yields an additive
Gaussian approximation for the voltage:

v̇ = τ−1
v (E0 − v) + x(Ee − 〈v〉) + y(EI − 〈v〉) + μ, (2)

τeẋ = −x +
√

2σ 2
e τeξe, (3)

τi ẏ = −y +
√

2σ 2
i τiξi, (4)

where angular brackets denote ensemble averages, and lower-
case letters distinguish the Gaussian approximation from the
original conductance-based model. The time scale τv = C/G,
total conductance G = GL + 〈Ge〉 + 〈Gi〉, and driving term
E0 = (GLEL + 〈Ge〉Ee + 〈Gi〉Ei)/G are all potentially time
dependent. The variables x and y scale with the fluctuations of
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synaptic conductances, x = (Ge − 〈Ge〉)/C and y = (Gi −
〈Gi〉)/C, and μ = Iext/C. Excitatory and inhibitory inputs
may be cross correlated, so that 〈ξe(t)ξi(t ′)〉 = ceiδ(t − t ′) with
a correlation coefficient |cei | � 1.

III. FIRING RATE

An ensemble of statistically identical neurons, described by
Eqs. (2)–(4) but each with different realizations of the noise
terms ξα(t), is now considered. Although a general solution
for the mean firing rate is not possible, we show here that
for τα/τv ≈ 1 the firing rate is well approximated by the
rate of upward threshold crossings of the free system (i.e.,
ignoring the reset). For a continuous process u(t), the rate r of
upcrossings of a level u = uθ is given by the Rice formula [16],
r = ∫ ∞

0 |u̇|p(uθ ,u̇)du̇, where p(u,u̇) is the joint distribution
of u and u̇. For a Gaussian process v(t), this yields

r = 1

2π

[σv̇]θ
σv

e−(vθ −〈v〉)2/(2σ 2
v )[e−β2 + √

πβ(1 + erfβ)], (5)

where σ denotes the standard deviation, β = 〈v̇〉θ/(
√

2[σv̇]θ ),
and the subscript θ indicates quantities evaluated conditional
on v = vθ . These conditional statistics can be expressed from
the marginal statistics as 〈v̇〉θ = 〈v̇〉 + [cov(v,v̇)/σ 2

v ](vθ −
〈v〉) and [σ 2

v̇ ]θ = σ 2
v̇ − cov(v,v̇)2/σ 2

v . In general, for time-
dependent inputs, the moments of v and v̇ are obtained
by solving a system of ordinary differential equations (see
Appendix A for details); for stationary inputs, Eq. (5) reduces
to [17–19]

rstat = 1

2π

σv̇

σv

e−v2
θ /(2σ 2

v ), (6)

and in the weakly nonstationary case, a Taylor expansion in
β yields r = rstat[1 + √

πβ]. Consistent with previous reports
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FIG. 1. (Color online) (a) Steady-state firing rate of the IF model.
Solid line, Eq. (6). Symbols, numerical simulation. Parameters
are Je = 6.3 nS,Ji = 4.5 nS,E0 = −55 mV,vθ = −48 mV,vr =
−60 mV,τv = 5 ms,τe = 3 ms,τi = 10 ms, and where not
otherwise mentioned, Re = 2.66 kHz, Ri = 2.22 kHz, and cei = 0.
(b) Firing-rate response to time-varying inputs. Top: Solid line,
Eq. (5); symbols, numerical simulation. Middle: Input spike rates,
with mean Re0 = 2.66 kHz for excitation and Ri0 = 2.22 kHz for
inhibition. Bottom: Instantaneous correlation coefficient between
excitatory and inhibitory inputs. Other parameters identical to those
in (a).

[20–22], r scales with the mean rate of change of voltage and
is thus proportional to any (small) applied current in Eq. (1).
Comparison of Eq. (5) with numerical simulations shows that
the level-crossing rate provides an excellent approximation to
the firing rate of the thresholded IF model (Fig. 1). Although
some deviations are seen in the stationary case, the theory
captures especially well variations of the firing rate [Fig. 1(b)],
an aspect particularly relevant for neuronal signaling.

IV. FREQUENCY RESPONSE

Another interesting application of Eq. (5) is to compute
the firing-rate response to sinusoidally modulated inputs.
While the frequency response of white-noise-driven IF neurons
has been calculated previously [1,10,23,24], only asymptotic
results are known for the case of filtered noise [10,24];
the level-crossing approach allows approximation of the
amplitude and phase of the response in the full frequency
range. In response to a perturbation ∼εeiωt (ε 
 1), the
statistical moments in Eq. (5) undergo periodic modulations
with frequency ω. The threshold crossing rate Eq. (5) can be
written as r = r0 + εr1e

iωt to first order in ε, with

r1

r0
=

√
π

2
[
σ 2

v̇

]
0

(
〈v̇〉1 + vθ

[cov(v,v̇)]1[
σ 2

v

]
0

)
+ vθ

〈v〉1[
σ 2

v

]
0

+ 1

2

(
v2

θ

[
σ 2

v

]
1[

σ 4
v

]
0

+
[
σ 2

v̇

]
1[

σ 2
v̇

]
0

−
[
σ 2

v

]
1[

σ 2
v

]
0

)
, (7)

where the subscripts indicate zeroth- and first-order correc-
tions in ε. Let us first consider as in [10] a current-based
description for both the synaptic input and the perturbation,
i.e., we set 〈v〉 = E0 and μ = εμ0e

iωt in Eq. (2). In this
case, only the mean values in (5) are affected, and we
obtain r1/r0 = μ0τv{vθ/[σ 2

v ]0 + iω
√
π/(2[σ 2

v̇ ]0)}/(1 + iωτv).
Consistent with [10], this expression converges to a real limit
μ0

√
π/σ 2

v̇ as ω → ∞, reflecting the ability of IF neurons
to respond to arbitrarily fast changes in input current (e.g.,
[21]). For the case of perturbations arising from changes in
presynaptic firing rates, modulations of the second moments in
(5) must be included, leading to more complex expressions for
r1. In general (see Appendix B), to linear order the correction
to the firing rate may be written as the sum of excitatory and
inhibitory components, r1 = re

1 − ri
1, which can be calculated

using (7) and are found to decay monotonically with increasing
frequency. However, due to the distinct filtering time constants,
the superposition of excitatory and inhibitory modulations
generally leads to nonmonotonic response profiles (Fig. 2):
if re

1 dominates at low frequencies, the faster decay of ri
1

leads to a peak in the response; conversely, if ri
1 dominates

for small ω the response may be suppressed around the
frequency where re

1 and ri
1 intersect. When re

1 � ri
1 at low

frequency, the two contributions cancel and the neuron behaves
as a bandpass filter. These results illustrate how distinct
integration time scales for excitation and inhibition can lead to
nontrivial responses at the postsynaptic level. The occurrence
of zero-phase lags at finite frequencies, which are not observed
in the case of a single synaptic type (or, equivalently, when τe

and τi are identical), also bears possible implications for the
generation of self-sustained network oscillations.
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FIG. 2. Frequency response of the IF model to sinusoidal mod-
ulations in presynaptic excitatory and inhibitory firing rates. The
response is illustrated in three typical cases: at low frequency, re

1 > ri
1

(a), re
1 = ri

1 (b), or re
1 < ri

1 (c). Top two graphs: The components of
the firing-rate response due to excitatory (re

1 ) and inhibitory (ri
1) mod-

ulations are shown as functions of the frequency of the modulation.
The summed response is determined from the amplitude (top graph)
and the phase difference (bottom graph) of the two components.
Bottom two graphs: Amplitude |r1| and phase lag phase(r1) of the
summed firing-rate response (solid line, theory; symbols, numerical
simulation). For (c) a phase difference of 29◦ is introduced between
excitatory and inhibitory modulations to maximize the trough.

V. CROSS CORRELATIONS

The Rice formula for the level-crossing rate can be
extended to approximate spike correlations in populations
of neurons. The probability density of two neurons cross-
ing their firing thresholds simultaneously, which we call
the joint firing rate, is given by a double integral r12 =∫ ∞

0

∫ ∞
0 |v̇1v̇2| p(vθ 1,vθ 2,v̇1,v̇2)dv̇1dv̇2, where the subscripts

1,2 refer to the neuron number. If both neurons have identical
membrane time constants, this integral can be evaluated in
closed form in the stationary case [18]; the result is rstat

12 =
pθσv̇1σv̇2/(2π )[

√
1 − ρ̇2 + 2ρ̇ arctan

√
(1+ρ̇)/(1 − ρ̇)]. Here,

pθ is the marginal probability density that the two neu-
rons are found at their firing threshold and is given by
a two-dimensional Gaussian, and we have defined the
correlation coefficient ρ̇ = cov(v̇1,v̇2)/(σv̇1σv̇2 ). If the two
neurons have distinct membrane time constants and/or
if the inputs are time dependent, the joint firing rate
can no longer be evaluated in closed form. A Taylor
expansion can be made for weakly nonstationary inputs, which
yields

r12 = pθ

[σv̇1 ]θ [σv̇2 ]θ
2π

(√
π (β1 + β2)(1 + ρ̇θ ) + (

1 + β2
1 +β2

2

)

×
√

1 − ρ̇2
θ + (2ρ̇θ + 4β1β2) arctan

√
1 + ρ̇θ

1 − ρ̇θ

)
(8)

to second order in β1,β2, where βk = 〈v̇k〉θ/(
√

2[σv̇k
]θ ), and

the subscript θ indicates here that a quantity is evaluated
conditional on both neurons being at their firing threshold.

To illustrate the use of Eq. (8), we consider an example
in which two neuronal populations receive common inputs.
Each population consists of P identical, unconnected neurons
receiving inputs from an external source; the excitatory input to
each neuron consists of a background part that is uncorrelated
across neurons and a shared part that is identical for all
neurons within the population. The shared inputs to the
two populations may also be cross correlated, resulting in
a correlation coefficient cee between the total input to any
two neurons in different populations. Similar definitions are
also assumed for the inhibitory inputs. The number of output
spikes for population 1 during a time interval �t has a mean
N1 = Pr1�t , where r1 is calculated from Eq. (5), and a
variance σ 2

N1
= Pr1�t + P (P − 1)(r11 − r2

1 )�t2, where r11

is the joint firing rate for population 1, obtained from Eq. (8).
The correlation coefficient between the outputs of the two
populations is

cout =
(

P
P−1

)
(r12 − r1r2)√[

r11 − r2
1 + r1

(P−1)�t

][
r22 − r2

2 + r2
(P−1)�t

] , (9)

where r12 is the joint firing rate for a pair of neurons in
different populations, obtained from Eq. (8) with appropriate
parameters. It is worth remarking that, while the terms
dependent on the time step in Eq. (9) vanish in the limit
of large populations, they may remain significant even for
relatively large populations because the correlative terms
rii − r2

i are generally of the order of the square of the firing
rate, which is itself a small quantity. Figure 3 shows the result
of numerical simulations for two populations of P = 1000
neurons, illustrating how output spike correlations are affected
by changes in input correlations. As can be expected from
previous reports (e.g., [25]), the pooled spike trains of the two
populations exhibit strong correlations of the same order of
magnitude as the correlations in the inputs. However, since
the output correlation depends on both input correlations and
the individual firing rates of the two populations, its precise
time course is difficult to anticipate in the case of time-varying
inputs. The results of Fig. 3 show that the theory provides
an accurate prediction of the evolution of the correlation
coefficient under time-dependent stimulus.

A. Implications for synchrony

The development of synchronization in layered feedforward
networks has been reported theoretically (e.g., [26,27]) and
experimentally [28]. Here, we use the results of the previous
section to calculate the Fano factor of the pooled output of a
population, which provides a quantitive measure of synchrony
at the level of pairwise correlations. The Fano factor is given
by F = σ 2

N/〈N〉, where N is the number of spikes fired in a
small time interval �t . For a large number P of independent
neurons, N approximates a Poisson process with mean and
variance 〈N〉 = σ 2

N = Pr�t , leading to a Fano factor F = 1.
A larger F > 1 indicates an increased probability of observing
either high or low numbers of spikes in �t , i.e., an increased
frequency of synchronous (spiking or quiescent) events. For
correlated neurons,

F = 1 + r11 − r2

r
(P − 1)�t, (10)
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FIG. 3. (Color online) Response of correlated neuronal
populations. (a) Schematic representation of the network. In addition
to background inputs that are uncorrelated across neurons, each
population receives shared inputs that are identical for all neurons.
Shared inputs to population 1 and 2 are also cross correlated (indicated
by blue arrows). (b) Firing rate of population 1 (solid line with open
circles) and 2 (dashed line with squares). Lines, Eq. (5); symbols,
numerical simulations. Parameters for population 1 are τv = 5 ms,
Je = 7.3 nS,Ji = 4.5 nS,vθ = −53 mV,vr = −60 mV, and for
population 2 τv = 4.65 ms,Je = 7.5 nS,Ji = 5.4 nS,vθ = −50 mV,

vr = −60 mV. (c) Cross-correlation coefficient of the outputs of
the two populations [solid line, expression (9); symbols, numerical
simulation]. (d) Excitatory (solid lines) and inhibitory (dashed
lines) input firing rates (population 2 data marked with arrow).
(e) Cross-correlation coefficients between excitatory (solid) and
inhibitory (dashed) inputs.

where r11 is the joint firing rate of the population. Positive
correlations in the inputs increase the Fano factor, indicating
an increase in synchrony. As an illustration, we consider a
similar scenario as in the previous section but consisting of
only one population [Fig. 4(a)]. The input initially consists
only of background input, so that neurons fire independently
(F = 1). At time t = 250 ms, the shared inputs activate and
the background input is weakened to keep the mean firing
rate constant [Fig. 4(b), top]. Although the firing rate does not
change, input through the shared connections drives correlated
spiking that is reflected by an approximately fivefold increase
in the Fano factor [Fig. 4(b), bottom]. After the shared input is
switched off at t = 750 ms, the network quickly returns to its
initial state. The increase in synchrony indicated by the Fano
factor is clearly visible in the raster plots in Figs. 4(c)–4(e),

(a)

(b)

(c)

(d)

(e)

FIG. 4. (Color online) Synchronized spiking from pairwise cor-
relations. (a) Schematic representation of the network. In addition
to background inputs that are uncorrelated across neurons, the
population is subjected to common inputs that are shared by all
neurons. (b) Mean firing rate and Fano factor of the pooled output
of the population. Black dashed lines, theory [top, Eq. (5); bottom,
Eq. (10)]. Red solid lines, numerical simulation. Shared inputs
with constant spike rate are activated between t = 250 and 750 ms;
background activity is adjusted to maintain a constant overall firing
rate. (c)–(e) Population firing rate (green solid line in top graphs) for
three single runs of the numerical simulation. Raster plots showing
the spikes of 200 randomly chosen neurons are also shown, in which
synchronous events are clearly seen.

where the spiking activity of 200 randomly chosen neurons is
shown for three different realizations of the simulation.

VI. RANGE OF VALIDITY

In order to study the range of validity of the level-crossing
approximation, we first note that, in the case of a single
synaptic type (y ≡ 0), for stationary inputs the system (2)–(4)
can be cast in the following form:

dv

dt
= v̇,

dv̇

dt
= −γev̇ − ωev +

√
2γeTeξe(t), (11)

where γe = τ−1
e + τ−1

v , ωe = (τvτe)−1, and Te = σ 2
e /[τv(τe +

τv)]. This system describes the motion of a Brownian particle
in a quadratic potential U (v) = 1

2ωev
2 with friction coefficient

γe and temperature Te. The problem of escape over a potential
barrier for systems of the form (11) has been studied for several
decades (e.g., [29]), and in the case of a quadratic potential, it
is known that for the thresholded model also, (6) is the correct
result for γe = O(1), to first order in Te [30]. In the case of
two synaptic inputs, the membrane voltage consists of the sum
of two contributions, v = ve + vi , where ve and vi each obey
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(a) (b) (c)

FIG. 5. (Color online) Range of validity of the level-crossing approximation. (a) Two-dimensional plot of the accuracy of the approximation
as a function of the dimensionless parameters � and σv/vϑ , for the case of the two-dimensional system (11). The accuracy is plotted for the two
limits τe → 0 (white noise limit) and +∞ (static noise limit). The plot is color coded according to the scale bar on the right. Level curves are
also shown as black solid lines. (b) The accuracy is represented here as a function of � and the dimensionless firing rate r/γ . (c) The accuracy
of the approximation in the case of the three-dimensional system (2)–(4) is shown for four different values of the parameter �. Solid lines
shows the theoretical prediction, and shaded regions correspond to the accuracy expected from the analysis in (b). Symbols show the result of
100 numerical simulations with randomly chosen parameters.

a dynamics of the form (11) with corresponding parameters
γi, ωi , and Ti for the inhibitory part. The system (2)–(4) can
be written as

dv

dt
= v̇,

dv̇

dt
= −γ v̇ − ωv +

√
2γ T ξ (t) + z (12)

with a new white noise ξ (t), and effective parameters de-
fined as T = T̃e + T̃i , with modified temperatures T̃k = (σ 2

k −
σ̃ 2)/[τv(τk + τv)], where σ̃ 2 = 2ceiσeσi

√
τeτi/(τe + τi), γ =

(γeT̃e + γiT̃i)/T , and ω is defined such that T/ω = T̃e/ωe +
T̃i/ωi . The new variable z is defined such that cov(v,z) =
cov(v̇,z) = 0 in the steady state and satisfies a linear equation
of the form dz/dt = β1z + β2v + β3v̇ + β4ξ

′ with constant
parameters βk and a second white noise ξ ′. Because in the
steady state z is independent of both v and v̇, we may
take the average of (12) given v and v̇, and assume that
the conditional mean 〈z |v,v̇〉 
 1, to obtain an approximate
two-dimensional description of the system near equilibrium,
Eq. (12) with z ≡ 0. This can be further simplified by switching
to dimensionless variables, t → γ t , v → v/σv , which yields

dv

dt
= v̇,

dv̇

dt
= −v̇ − �v +

√
2�ξ (t) (13)

with a unique dimensionless parameter � = ω/γ 2 ∈ (0, 1
4 ),

and where ξ is a unit white noise in the dimensionless
time. This formulation allows us to study the validity of the
level-crossing method in a two-dimensional space defined
by � and the dimensionless threshold vθ/σv . To do so, we
numerically simulate the reduced system (13), systematically
varying the parameters � and vθ/σv , and compare the resulting
firing rate rsim with the theoretical prediction rth of the
level-crossing method. We then compute the accuracy as
1− |rsim − rth | /rth. As can be seen from Figs. 5(a) and 5(b),
the accuracy is maximal near � � 1

4 , which corresponds to
the case of identical time constants (τe,i = τv). Although the
approximation breaks down in the limit where τe,i → 0 (white
noise limit) or +∞ (static noise limit), it remains highly

accurate for � � 0.2, corresponding to synaptic time constants
in the range of ∼0.4τv to 2.6τv . In order to check the validity of
the reduced equation (13) for the thresholded system, we then
simulate the three-dimensional system (2)–(4) for fixed values
of � by selecting random values for the parameters τe,i and σe,i ,
and verify that the results match the accuracy expected from
the analysis of the reduced system [Fig. 5(c)]. The breakdown
of the approximation for τe,i → 0,+∞ can be explained by
the fact that in these two limits, voltage trajectories following
a threshold crossing do not return near the stable equilibrium
before crossing the threshold again. For very short synaptic
time constants, this is due to the fact that voltage fluctuations
become so rapid that the probability of multiple threshold
crossings in a small time interval becomes very high. In
the limit of long synaptic time constants, after a threshold
crossing the input can remain above threshold for a sufficiently
long time for ballistic firing to occur. These two different
mechanisms explain the asymmetry in the plots of Figs. 5(a)
and 5(b) (it is readily checked that the symmetry is recovered
if the synaptic input is reset after each action potential).
These results show that the level-crossing rate provides a good
approximation to the firing rate in the steady-state case as long
as the synaptic filtering time constants remain of the same
order of magnitude as the membrane time constant. In the
case of time-varying inputs, this is expected to hold as long as
the voltage distribution remains subthreshold and the firing rate
is much lower than the typical relaxation time of the voltage
(r/γ 
 1). Applicability to the case of conductance-based
Poissonian synaptic drive is justified when the usual conditions
of validity of the effective time-constant approximation are
met (i.e., high input rates and small postsynaptic conductance
increase; see, e.g. [5]).

VII. DISCUSSION

We have shown how level-crossing rates can be used
to approximate the firing statistics of thresholded integrate-
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and-fire neurons. Using this approach, we derived analytical
expressions for three key aspects of the response: the mean
firing rate, the linear response to sinusoidally modulated
inputs, and the pairwise cross correlation between neurons
receiving correlated inputs. The theory was developed for
both stationary and time-dependent stimulus conditions and
shown to accurately match the results of numerical simulations
of integrate-and-fire neurons receiving filtered Poissonian
synaptic drive. Using similar methods, other authors have
recently suggested threshold-crossing models as an alternative
to the standard integrate-and-fire description [17,18], in which
the nonlinear reset mechanism precludes detailed analytical
treatment. Our results provide a quantitative link between
these two descriptions, as well as the range of parameters
under which similar firing statistics are obtained. In particular,
we have found that the synaptic filtering time constant is
a crucial parameter for the validity of the level-crossing
method. We have also shown that the level-crossing method
can be extended to the case of time-dependent inputs, an
aspect that has not been previously investigated, to our
knowledge.

Although we have treated here only the case of unconnected
populations, the theory captures the time-dependent aspects
of the response and provides the required quantities for a
self-consistent treatment of recurrent networks. Specifically,
by using expressions (5) and (8) to express the mean, variance,
and cross correlations of excitatory and inhibitory synaptic
conductances, a closed system of equations can be obtained
that corresponds to a mean-field description of the network.
Analyzing this type of model could give interesting insights
into the way synaptic filtering affects network dynamics.
Moreover, because correlations naturally arise in recurrent
networks as a result of shared connections, their effect on
firing rates [Fig. 1(a)] and synchronization (Fig. 4) suggest that
these may play a crucial role in determining the stable states
of a network. The frequency response of individual neurons
(Fig. 3), which was found to exhibit a richer structure when
distinct excitatory and inhibitory time scales are considered,
also suggests that stable oscillatory states may be possible that
are not present in purely excitatory networks.

Our results could be generalized in several ways. For
example, it should be possible to obtain perturbative cor-
rections for the effects of the voltage reset that follows the
emission of spikes. Although our analysis of cross correlations
is restricted to pairwise correlations, higher-order correlations
could also be calculated using the same formalism. The
case of non-Gaussian voltage distributions could be treated
using expansions in Hermite polynomials, for example a
Hedgeworth expansion [31].

Note added in proof. We have recently learned of a closely
related article [33] dealing with the dynamical response of
threshold-crossing neurons.
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APPENDIX A: FIRING RATE

1. Level-crossing rates for Gaussian processes

We detail here the calculation of level-crossing rates for
Gaussian processes. For concreteness, we start with the IF
model (2)–(4) as an example. Due to the linearity of this
system, and because x and y are Gaussian random variables,
v(t) and its derivative v̇(t) are also Gaussian random variables.
The rate of upward crossings of the threshold vθ is given
by [16]

r =
∫ ∞

0
|v̇|p(vθ ,v̇)dv̇, (A1)

where p(v,v̇) is the marginal probability density of v and v̇.
Since in general these two variables are not independent, we
rewrite p(vθ ,v̇) using Bayes’ rule as p(vθ )p(v̇|vθ ), where

p(vθ ) = 1√
2πσv

e−(vθ −〈v〉)2/(2σ 2
v ), (A2)

p(v̇|vθ ) = 1√
2π [σv̇]θ

e−(v̇−〈v̇〉θ )2/(2[σ 2
v̇ ]θ ), (A3)

where the conditional moments 〈v̇〉θ and [σv̇]2
θ are yet to be

determined. Insertion of (A2) and (A3) into (A1) yields

r = 1

2πσv[σv̇]θ
e−(vθ −〈v〉)2/(2σ 2

v )
∫ ∞

0
v̇e−(v̇−〈v̇〉θ )2/(2[σ 2

v̇ ]θ )dv̇

= 1

2π

[σv̇]θ
σv

e−(vθ −〈v〉)2/(2σ 2
v )[e−β2 + √

πβ(1 + erfβ)],

where β = 〈v̇〉θ/(
√

2[σv̇]θ ). To determine the conditional
moments, we define a new variable z = v̇ + αv that is
independent of v, i.e., 〈zv〉 = 〈z〉〈v〉, which is achieved for
α = −cov(v,v̇)/σ 2

v . Due to independence, we have 〈z〉θ = 〈z〉,
where

〈z〉θ = 〈v̇〉θ + αvθ ,

〈z〉 = 〈v̇〉 + α〈v〉.
This is solved for 〈v̇〉θ ,

〈v̇〉θ = 〈v̇〉 + cov(v,v̇)

σ 2
v

(vθ − 〈v〉) . (A4)

Similarly, for the variance we have [σ 2
z ]θ = σ 2

z , where[
σ 2

z

]
θ

= [
σ 2

v̇

]
θ
,

σ 2
z = σ 2

v̇ + 2αcov(v,v̇) + α2σ 2
v ,

which gives

[
σ 2

v̇

]
θ

= σ 2
v̇ − cov(v,v̇)2

σ 2
v

. (A5)

2. Moments for time-dependent input

To determine the moments of v and v̇ for arbitrary inputs,
we rewrite the system (2)–(4) in vector form as

d�z/dt = A�z + �μ + B�ξ (t), (A6)

041919-6



FIRING STATISTICS AND CORRELATIONS IN SPIKING . . . PHYSICAL REVIEW E 84, 041919 (2011)

where �ξ is a multidimensional white noise, and

�z(t) = (v(t),x(t),y(t))T ,

A(〈v(t)〉,t) =
⎛
⎝−1/τv(t) Ee − 〈v(t)〉 Ei − 〈v(t)〉

0 −1/τe 0
0 0 −1/τi

⎞
⎠ ,

B(t) =
⎛
⎝0 0 0

0 σe(t)
√

2(1 − cei(t)2)/τe σe(t)cei(t)
√

2/τe

0 0 σi(t)
√

2/τi

⎞
⎠ ,

�μ(t) = (E0(t)/τv(t) + Iext(t)/C,0,0)T ,

where cei(t) is the correlation coefficient between excitatory
and inhibitory inputs, such that 〈ξe(t)ξi(t + τ )〉 = cei(t)δ(τ ).
Taking moments of Eq. (A6) yields ordinary differential
equations for the mean 〈�z(t)〉 and covariance matrix Cij (t) =
〈zi(t)zj (t)〉 − 〈zi(t)〉〈zj (t)〉. These equations are in general
implicit due to the dependence of the matrix A on the mean
voltage, but can be solved iteratively using standard numerical
methods. However, after a short initial transient 〈x〉 = 〈y〉 = 0,
the equation for the first moment becomes explicit:

d

dt
〈v(t)〉 = [E0(t) − 〈v(t)〉]/τv(t) + Iext(t)/C,

which can be integrated to give

〈v(t)〉 − 〈v(t0)〉 =
∫ t

t0

e
− ∫ t

s
du

τv (u)

(
E0(s)

τv(s)
+ Iext(s)

C

)
ds.

This yields the explicit form of A(t), which can then be
substituted in the equation for the second moments,

d

dt
C = AC + CAT + BBT ,

which becomes solvable (see, e.g., [32] for an explicit solu-
tion). The moments of v̇ are then obtained using 〈v̇〉 = (A〈�x〉)1,
σ 2

v̇ = (ACAT )11, and cov(v,v̇) = (AC)11. It is also worth
noting that both equations simplify in the weakly nonstationary
case, where 〈v(t)〉 � const, so that 〈v〉 can be substituted by
E0 + τvIext/C in the expression for A.

In the stationary case, we have

〈v〉 = E0 + τvIext/C,

〈v̇〉 = 0,

σ 2
v = (

σ 2
e Ē2

e +σ̃ 2ĒeĒi

) τ 2
v τe

τv + τe

+(
σ 2

i Ē2
i + σ̃ 2ĒiĒe

) τ 2
v τi

τv + τi

,

σ 2
v̇ = (

σ 2
e Ē2

e +σ̃ 2ĒeĒi

) τv

τv + τe

+(
σ 2

i Ē2
i + σ̃ 2ĒiĒe

) τv

τv + τi

,

where Ēe,i = Ee,i − 〈v〉 and σ̃ 2 = 〈xy〉 = 2ceiσeσi

√
τeτi/

(τe + τi).

APPENDIX B: FREQUENCY RESPONSE

When a perturbation f (t) = εeiωt is injected into the system
(2)–(4), the dynamical variables respond by oscillating with
the same frequency ω as the perturbation. In this section, we
calculate the modulation of the firing rate when a perturbation
of the form f (t) is injected on top of a background stationary
input. For simplicity, we assume cei = 0, but the case of
correlated inputs can be treated in the same way. We adopt here

the following notation: for any statistical variable z, we write
z(t) = z0 + εz1e

iωt , where z0 is the value of z(t) for ε = 0,
and z1 is the first-order correction in ε due to the perturbation
f (t). The determination of the firing-rate response requires
the calculation of the first and second moments appearing in
Eq. (5), which we therefore expand as

〈v(t)〉 = 〈v〉0 + ε〈v〉1e
iωt , (B1)

〈v̇(t)〉 = 〈v̇〉0 + ε〈v̇〉1e
iωt , (B2)

σ 2
v (t) = [

σ 2
v

]
0 + ε

[
σ 2

v

]
1e

iωt , (B3)

σ 2
v̇ (t) = [

σ 2
v̇

]
0 + ε

[
σ 2

v̇

]
1e

iωt , (B4)

cov(v(t)v̇(t)) = [cov(v,v̇)]0 + ε[cov(v,v̇)]1e
iωt . (B5)

Substituting (B1)–(B5) in (5) and expanding to first order in ε

yields the firing rate in the form r(t) = r0 + εr1e
iωt , with r1/r0

given by Eq. (7). This can be rewrittten, using cov(v,v̇)1 =
1
2 iω[σ 2

v ]1, as

r1

r0
=

[√
π

2
[
σ 2

v̇

]
0

〈v̇〉1 + vθ

〈v〉1[
σ 2

v

]
0

]

+ 1

2

[[
σ 2

v

]
1[

σ 2
v

]
0

(
v2

θ[
σ 2

v

]
0

− 1 + iωvθ

√
π

2
[
σ 2

v̇

]
0

)
+

[
σ 2

v̇

]
1[

σ 2
v̇

]
0

]
.

(B6)

Explicit expressions for the moments appearing in (B6) are
given below for two specific scenarios.

1. Response to modulations in input current

We first consider the case where the perturbation is
injected as an external current, i.e., we set Iext = εI0e

iωt

in (1). Substituting (v − E0) → v and rescaling the reversal
potentials accordingly, the system (2)–(4) becomes

v̇ = −τ−1
v v + x(Ēe − 〈v〉)+y(Ēi − 〈v〉) + εμ0e

iωt , (B7)

τeẋ = −x +
√

2σ 2
e τeξe, (B8)

τi ẏ = −y +
√

2σ 2
i τiξi, (B9)

where Ēe,i = Ee,i − E0 and μ0 = I0/C. Taking the average
of (B7) and integrating, we obtain

〈v(t)〉 =
∫ t

−∞
e−(t−s)/τv εeiωtds = εμ0τv

eiωt

1 + iωτv

, (B10)

so that 〈v〉0 = 0 and 〈v〉1 = μ0τv(1 + iωτv)−1. Differentiating
(B10), we get 〈v̇〉0 = 0 and 〈v̇〉1 = iωμ0τv(1 + iωτv)−1. By
taking second moments of (B7)–(B9), we obtain through
similar calculations[

σ 2
v

]
0 = σ 2

e Ē2
e

τ 2
v τe

τv + τe

+ σ 2
i Ē2

i

τ 2
v τi

τv + τi

, (B11)

[
σ 2

v

]
1 = −σ 2

e Ēeμ0
τ 3
v τe

τv + τe

kvkvv(1 + kve) (B12)

−σ 2
i Ēiμ0

τ 3
v τi

τv + τi

kvkvv(1 + kvi), (B13)

[
σ 2

v̇

]
0 = σ 2

e Ē2
e

τv

τv + τe

+ σ 2
i Ē2

i

τv

τv + τi

, (B14)
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[
σ 2

v̇

]
1 = −σ 2

e Ēeμ0
τ 2
v

τv + τe

kvv(1 + kvkve) (B15)

−σ 2
i Ēiμ0

τ 2
v

τv + τi

kvv(1 + kvkvi), (B16)

where we have defined

kα=(1 + iωτα)−1 and kαβ =
[

1+iω

(
1

τα

+ 1

τβ

)−1]−1

(B17)

for α,β ∈ {v,e,i}. The firing-rate modulation can then be
obtained by inserting these expressions in (B6). Note that
as ω → ∞, only 〈v̇〉1 remains finite, so that the firing-rate
modulation converges to a real limit,

r1

r0
→ μ0

√
π

2[σ 2
v̇ ]0

(ω → ∞). (B18)

For the case where synaptic inputs are modeled as postsynaptic
currents, i.e., replacing 〈v〉 by E0 in Eq. (B7), the first-order
corrections to the variances (B13) and (B16) vanish, and the
expression for the firing rate simplifies as

r1

r0
= μ0τv

vθ

[σ 2
v ]0

+ iω
√

π

2[σ 2
v̇ ]0

1 + iωτv

which has the same high-frequency behavior as (B18).

A. Response to modulations in presynaptic firing rates

We now consider the case where the modulations arise
from changes in presynaptic firing frequencies. We rewrite the
equation for the excitatory synaptic conductance,

τeĠe = −Ge + ceτeNe(t), (B19)

where Ne(t) = ∑
δ(t − tf ) is a Poisson process representing

the sum of excitatory presynaptic spikes. A modulation in
presynaptic excitatory rate is described by 〈Ne(t)〉 = σ 2

Ne(t) =
Re0 + εeRe1e

iωt . We can then write 〈Ge(t)〉 = 〈Ge〉0 +
εe〈Ge〉1e

iωt and σ 2
Ge

(t) = [σ 2
Ge

]0 + εe[σ 2
Ge

]1e
iωt , where

〈Ge〉0 = ceτeRe0,

〈Ge〉1 = ceτeRe1ke,[
σ 2

Ge

]
0 = 1

2c2
eτeRe0,[

σ 2
Ge

]
1 = 1

2c2
eτeRe1ke,

with ke defined as in (B17). Similar equations are assumed
for the inhibitory part, with parameter εi and frequency
ω′. Inserting into (2)–(4), substituting (v − E0) → v, and
rescaling the reversal potentials accordingly yields

v̇ = −(
τ−1
v + εe〈ge〉1e

iωt + εi〈gi〉1e
iω′t)v

+ εe〈ge〉1e
iωt Ēe + εi〈gi〉1e

iω′t Ēi

+ x(Ēe − εe〈v〉1e
iωt ) + y(Ēi − εi〈v〉1e

iω′t ), (B20)

τeẋ = −x +
√

2τe

([
σ 2

e

]
0 + εe

[
σ 2

e

]
1e

iωt
)
ξe(t), (B21)

τi ẏ = −y +
√

2τi

([
σ 2

i

]
0 + εi

[
σ 2

i

]
1e

iω′t
)
ξi(t), (B22)

to first order in εe,εi , where ge,i = Ge,i/C. By taking the
average of Eq. (B20), we obtain 〈v(t)〉 = 〈v〉0 + εe〈v〉e1eiωt +
εi〈v〉i1eiω′t , where

〈v〉0 = 0,

〈v〉e1 = τvkv〈ge〉1Ēe,

〈v〉i1 = τvkv〈gi〉1Ēi .

Similarly, we have for the variance σ 2
v (t) = [σ 2

v ]e0 + [σ 2
v ]i0 +

εe[σ 2
v ]e1e

iωt + εi[σ 2
v ]i1e

iω′t , where

[
σ 2

v

]e

0 = σ 2
e Ē2

e τ
2
v

τe

τv + τe

,[
σ 2

v

]e

1 = [σ 2
v ]e0kxxkvvkve

+ [
σ 2

v

]e

0

(
kvv(1 + kve)

[ 〈ge〉1

iω
− 〈v〉e1

Ēe

]
− 〈ge〉1

iω

)

+ [
σ 2

v

]i

0

(
kvv(1 + kvi)

[ 〈ge〉1

iω
− 〈v〉e1

Ēi

]
− 〈ge〉1

iω

)
.

The inhibitory terms [σ 2
v ]i0 and [σ 2

v ]i1 are obtained by
switching the indices e ↔ i and ω ↔ ω′ in the above ex-
pressions. For the covariance, cov(v(t)x(t)) = cov(v,x)0 +
εecov(v,x)e1e

iωt + εicov(v,x)i1e
iω′t , with

cov(v,x)0 = σ 2
e Ēeτv

τe

τv + τe

,

cov(v,x)e1 = cov(v,x)e0keekve

+ cov(v,x)e0

[
kve

( 〈ge〉1

iω
− 〈v〉e1

Ēe

)
− 〈ge〉1

iω

]
,

cov(v,x)i1 = cov(v,x)e0

[
k′
ve

( 〈gi〉1

iω′ − 〈v〉i1
Ēe

)
− 〈gi〉1

iω′

]
,

where k′
ve is defined by Eq. (B17) with ω replaced by

ω′. The other covariance cov(v,y) is obtained from the
above expressions by switching the indices e ↔ i and ω ↔
ω′. The variance of v̇ is given by σ 2

v̇(t) = [σ 2
v̇ ]e0 + [σ 2

v̇ ]i0 +
εe[σ 2

v̇ ]e1e
iωt + εi[σ 2

v̇ ]i1e
iω′t , with

[
σ 2

v̇

]e

0 =
[
σ 2

v

]e

0

τ 2
v

+ [
σ 2

e

]
0Ē

2
e − 2

Ēe

τv

cov(v,x)0,

[
σ 2

v̇

]e

1 =
[
σ 2

v

]e

1

τ 2
v

+ [
σ 2

e

]e

1Ē
2
e + 2

〈ge〉1

τv

[
σ 2

v

]
0

− 2〈v〉e1Ēe

[
σ 2

e

]
0 − 2

Ēe

τv

cov(v,x)e1

+ 2

( 〈v〉e1
τv

− 〈ge〉1Ēe

)
cov(v,x)0

− 2〈v〉e1Ēi

[
σ 2

i

]
0 − 2

Ēi

τv

cov(v,y)e1

+ 2

( 〈v〉e1
τv

− 〈ge〉1Ēe

)
cov(v,y)0,

and with similar expressions for [σ 2
v̇ ]i0 and [σ 2

v̇ ]i1 with indices
e ↔ i and ω ↔ ω′ switched. These expressions are then
inserted into (B6) to obtain the firing-rate modulation r1.
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APPENDIX C: CROSS CORRELATIONS

We now consider a pair of neurons receiving cross-
correlated inputs:

v̇1 = τ−1
1 (E1 − v1) + x1(Ee − 〈v1〉)+y1(Ei − 〈v1〉), (C1)

τeẋ1 = −x1 +
√

2σ 2
x1

τeξe, (C2)

τi ẏ1 = −y1 +
√

2σ 2
y1

τiξi, (C3)

v̇2 = τ−1
2 (E2 − v2) + x2(Ee − 〈v2〉)+y2(Ei − 〈v2〉), (C4)

τeẋ2 = −x2 +
√

2σ 2
x2

τeξ
′
e, (C5)

τi ẏ2 = −y2 +
√

2σ 2
y2

τiξ
′
i , (C6)

where the subscripts 1,2 indicate the neuron number, and
we have omitted external inputs for simplicity. We assume
that correlations exist between excitatory and inhibitory
inputs to the two neurons, i.e., 〈ξα(t)ξ ′

β(t ′)〉 = cαβ(t)δ(t − t ′)
for α = e,i.

1. Joint firing rate

We are interested in the probability that a pair of neurons
described by (C1)–(C6) cross their firing thresholds simulta-
neously. This is given by the total probability current flowing
through the region of the hyperplane {v1 = vϑ1 ,v2 = vϑ2}
defined by the upward crossing condition v̇1,v̇2 > 0. Thus,

r12 =
∫ ∞

0

∫ ∞

0
v̇1v̇2 p(vϑ1 ,vϑ2 ,v̇1,v̇2)dv̇1dv̇2,

where p(vϑ1 ,vϑ2 ,v̇1,v̇2) is the probability density that the two
neurons are found at their respective firing thresholds, with
velocities equal to v̇1 and v̇2. As in the single-neuron case, we
expand this probability as pϑp(v̇1,v̇2|vϑ1 ,vϑ2 ), where

pϑ =
∫∫

p(vϑ1 ,vϑ2 ,v̇1,v̇2)dv̇1dv̇2

is the marginal probability density of the two neurons being
at their firing threshold. This is given by a two-dimensional
Gaussian

pθ =
exp

[
− 1

2(1−ρ2)

(
v̄2

ϑ1
σ 2

v1

+ v̄2
ϑ2

σ 2
v2

− 2ρ
v̄ϑ1 v̄ϑ2
σv1 σv2

)]
2πσv1σv2

√
1 − ρ2

,

where v̄ϑi
= vϑi

− 〈vi〉, and the correlation coefficient ρ is
defined by

ρ = cov (v1,v2)

σv1σv2

.

Similarly, the conditional density p(v̇1,v̇2|vθ 1,vθ 2) is given
by a two-dimensional Gaussian, the mean and covariance of
which remain to be determined. The joint firing rate can then
be written

r12

pϑ

=
∫ ∞

0

∫ ∞

0
v̇1v̇2 p(v̇1,v̇2|vθ 1,vθ 2)dv̇1dv̇2. (C7)

The integral on the right-hand side is best performed by using
two independent variables a and b defined as

v̇1 = [
σ 2

v̇1

]
θ

(√
1 + ρ̇θ

2
a +

√
1 − ρ̇θ

2
b

)
,

v̇2 = [
σ 2

v̇2

]
θ

(√
1 + ρ̇θ

2
a −

√
1 − ρ̇θ

2
b

)
,

where

ρ̇θ = cov (v̇1,v̇2)θ[
σ 2

v̇1

]
θ

[
σ 2

v̇2

]
θ

is the correlation coefficient of v̇1 and v̇2 conditional on both
neurons being at their firing thresholds simultaneously. These
new variables are scaled (σ 2

a = σ 2
b = 1) and independent

[cov (a,b) = 0] over the range of the integral. Equation (C7)
then simplifies as

4πr12

[σv̇1 ]θ [σv̇2 ]θpϑ

= I [〈a〉,〈b〉] (C8)

with

I [〈a〉,〈b〉] =
∫ ∞

0
da

∫ λa

−λa

db[(a2 − b2)

+ ρ̇θ (a2 + b2)]e−(a−〈a〉)2/2e−(b−〈b〉)2/2,

where λ =
√

1+ρ̇θ

1−ρ̇θ
. In general, the variables a and b do not have

zero mean and the above integral does not admit a closed form
solution. A Taylor expansion for 〈a〉,〈b〉 
 1 can be made,
which yields to lowest order

I [0,0] =
∫ ∞

0
da

∫ λa

−λa

db[(a2 − b2) + ρ̇θ (a2 + b2)]e−(a2+b2)/2

=
∫ ∞

0
dr

∫ arctan(λ)

−arctan(λ)
dθ r3[ρ̇θ + cos2(θ ) − sin2(θ )]e−r2/2

= 4λ

1 + λ2
+ 4ρ̇θ arctan(λ)

= 2
√

1 − ρ̇2
θ + 4ρ̇θarctan

√
1 + ρ̇θ

1 − ρ̇θ

. (C9)

Similarly, we find for the first- and second-order terms

�∇I [0,0]

( 〈a〉
〈b〉

)
= 2

√
π (1 + ρ̇θ )3/2〈a〉

= 2
√

π (1 + ρ̇θ )(β1 + β2), (C10)

where βi = 〈v̇i〉θ /(
√

2[σ 2
v̇i

]θ ), and

1

2

( 〈a〉
〈b〉

)T [
∂2I [0,0]

∂xi∂xj

]( 〈a〉
〈b〉

)

= [(1 + ρ̇θ )〈a〉2 + (1 − ρ̇θ )〈b〉2](1 − ρ̇θ )λ

+ 2arctanλ[(1 + ρ̇θ )〈a〉2 − (1 − ρ̇θ )〈b〉2]

= 2
√

1 − ρ̇2
θ

(
β2

1 + β2
2

) + 8β1β2arctan

√
1 + ρ̇θ

1 − ρ̇θ

.
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Summing the above expression with (C9) and (C10) and
replacing into (C8) yields expression (8) for the joint firing
rate.

2. Conditional moments

Evaluating expression (8) requires the statistics of v̇1 and
v̇2 given that both neurons are at their firing threshold. To
determine these statistics, we proceed as in the single-neuron
case by defining new variables z1 and z2, defined by zi =
v̇i + αiv1 + βiv2, and request that these be independent of
both v1 and v2:

〈zivj 〉 = 〈zi〉〈vj 〉

for i,j = 1,2. This gives[
σ 2

v1
cov(v1,v2)

cov(v1,v2) σ 2
v2

][
αi

βi

]
= −

[
cov(v̇i ,v1)
cov(v̇i ,v2)

]
,

which is solved by

αi = 1

1 − ρ2

[
ρ2 cov(v̇i ,v2)

cov(v1,v2)
− cov(v̇i ,v1)

σ 2
v1

]
,

βi = 1

1 − ρ2

[
ρ2 cov(v̇i ,v1)

cov(v1,v2)
− cov(v̇i ,v2)

σ 2
v2

]
.

The conditional statistics can then be calculated by tak-
ing advantage of the independence property (11), which
yields

〈v̇i〉θ = 〈v̇i〉 + αi(〈v1〉 − vϑ1 ) + βi(〈v2〉 − vϑ2 ),

cov(v̇i ,v̇j )θ = cov(v̇i ,v̇j ) + 1

1 − ρ2

[
ρ2

(
cov(v̇i ,v1)cov(v̇i ,v2) + cov(v̇j ,v1)cov(v̇j ,v2)

cov(v1,v2)

)

−cov(v̇i ,v1)cov(v̇j ,v1)

σ 2
v1

− cov(v̇i ,v2)cov(v̇j ,v2)

σ 2
v2

]
.

For the stationary case, it can be seen by a direct cal-
culation that if the two neurons have identical membrane
time constants (τ1 = τ2), then cov

(
v̇i ,vj

) = 0. It follows that
β1 = β2 = 0, so that the expression of the joint firing rate
simplifies as

rstat
12 = pθ

σv̇1σv̇2

2π

[√
1 − ρ̇2 + 2ρ̇ arctan

√
1 + ρ̇

1 − ρ̇

]
.

3. Example of correlated populations

To illustrate possible applications of these results, we
consider here in more detail the example given in the main text.
We consider two populations of P neurons. Each population
consists of unconnected, identical neurons, but the neurons
in population 1 may differ from those of population 2. Each
population receives excitatory and inhibitory inputs from an
external source. The excitatory input to population 1 consists of
a background input, with rate R

bg
e1 , which is independent across

neurons, and a shared input with rate Rsh
e1 that is identical for

all neurons within this population. The presence of the shared
input implies that the excitatory inputs to any two neurons
in population 1 are positively correlated; the strength of this
correlation can be described by the correlation coefficient

c11
ee =

〈
N

p

1 N
q

1

〉 − 〈
N

p

1

〉〈
N

q

1

〉
σN

p

1
σN

q

1

, (C11)

where N
p

1 and N
q

1 represent the number of excitatory spikes
received by two neurons labeled p and q in population 1
during a small time interval. Furthermore, it is assumed that
the shared inputs to population 1 are cross correlated with the
shared input to population 2; the strength of this correlation is
described by a second correlation coefficient c12

ee defined in a

similar way,

c12
ee =

〈
N

p

1 N
q

2

〉 − 〈
N

p

1

〉〈
N

q

2

〉
σN

p

1
σN

q

2

, (C12)

where N
q

2 is the number of excitatory spikes received by
neuron q in population 2. Similar definitions are also assumed
for the inhibitory inputs, as well for the inputs to the second
population.

Consider now the pooled output spikes of population 1:
during a small time interval �t , the number of output spikes
is a random variable N1 defined by

N1 =
P∑

p=1

N
p

1 ,

where N
p

1 is the number of spikes produced by the neuron
labeled p during this time interval, and the sum runs over all
neurons in population 1. The mean and variance of N1 are
therefore given by

〈N1〉 =
P∑

p=1

〈
N

p

1

〉 = Pr1�t,

σ 2
N1

=
P∑

p,q=1

(〈
N

p

1 N
q

1

〉 − 〈
N

p

1

〉 〈
N

q

1

〉)

=
P∑

p=1

σN
p

1
+

P∑
p,q = 1
p �= q

cov
(
N

p

1 ,N
q

1

)
(C13)

= Pr1�t + P (P − 1)(r11 − r2
1 )�t2, (C14)
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where r1 is the firing rate of a single neuron [calculated with Eq. (5)], and r11 is the joint firing rate for a pair of neurons in
population 1 [calculated with Eq. (8)]. In deriving (C14), we have assumed that the time step �t is sufficiently small so that the
number of action potentials emitted by a single neuron N

p

1 can be approximated by a Bernoulli random variable (i.e., r1�t 
 1).
The covariance of the number of spikes of the two populations is given by

cov(N1,N2) =
P∑

p,q=1

(〈
N

p

1 N
q

2

〉 − 〈
N

p

1

〉〈
N

q

2

〉) = P 2(r12 − r1r2)�t2, (C15)

where N2 refers to the spikes of population 2. The correlation coefficient of N1 and N2 is thus given by

cout =
(

P
P−1

)
(r12 − r1r2)√[

r11 − r2
1 + r1

(P−1)�t

][
r22 − r2

2 + r2
(P−1)�t

] , (C16)

where the terms dependent on the time step are of the order of P −1. For sufficiently large populations,

cout → r12 − r1r2[
r11 − r2

1

]1/2[
r22 − r2

2

]1/2 (P → ∞)

becomes independent of the time interval considered.
The Gaussian approximation for this model is constructed as follows. As in the single-neuron case, we write the system

(C1)–(C6) as

d�z
dt

= A�z + �μ + B�ξ (t),

where �ξ is a multidimensional white noise, and

�z = (vα(t),xα(t),yα(t),vβ(t),xβ(t),yβ(t))T ,

A =

⎛
⎜⎜⎜⎜⎜⎝

−1/τα(t) Ee − 〈vα(t)〉 Ei − 〈vα(t)〉 0 0 0
0 −1/τe 0 0 0 0
0 0 −1/τi 0 0 0
0 0 0 −1/τβ (t) Ee − 〈vβ(t)〉 Ei − 〈vβ(t)〉
0 0 0 0 −1/τe 0
0 0 0 0 0 −1/τi

⎞
⎟⎟⎟⎟⎟⎠ ,

B(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 σxα
(t)

√
2
(
1 − c

αβ
ee (t)2

)/
τe 0 0 σxα

(t)cαβ
ee (t)

√
2/τe 0

0 0 σyα
(t)

√
2
(
1 − c

αβ

ii (t)2
)/

τi 0 0 σyα
(t)cαβ

ii (t)
√

2/τi

0 0 0 0 σxβ

√
2/τe 0

0 0 0 0 0 σyβ

√
2/τi

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�μ(t) = (Eα(t)/τα(t),0,0,Eβ(t)/τβ(t),0,0)T .

The noise amplitudes are defined by σ 2
xα

= J 2
α τe(Rbg

eα + Rsh
eα)/2, where Je denotes the size of the jump in excitatory conductance

after an excitatory spike is received, and with a similar definition for the inhibitory noise terms σyα
. The statistics of the velocities

v̇α and v̇β can be obtained from the covariance matrix C using σ 2
v̇α

= (ACAT )11, σ 2
v̇β

= (ACAT )44, and cov
(
v̇α,v̇β

) = (ACAT )14.
The equations for the mean 〈z〉 and covariance matrix C,

d

dt
〈z〉 = A〈z〉 + �μ,

d

dt
C = AC + CAT + BBT ,

are integrated twice with (α,β) = (1,1) and (2,2), which yields the firing rates r1,r2 and the joint firing rates r11,r22, and a third
time with (α,β) = (1,2) to obtain the joint firing rate r12. The correlation coefficient cout between the pooled outputs of the two
populations is then calculated using Eq. (C16).
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